41 research outputs found

    Strategic Shift to a Diagnostic Model of Care in a Multi-Site Group Dental Practice.

    Get PDF
    BackgroundDocumenting standardized dental diagnostic terms represents an emerging change for how dentistry is practiced. We focused on a mid-sized dental group practice as it shifted to a policy of documenting patients' diagnoses using standardized terms in the electronic health record.MethodsKotter's change framework was translated into interview questions posed to the senior leadership in a mid-size dental group practice. In addition, quantitative content analyses were conducted on the written policies and forms before and after the implementation of standardized diagnosis documentation to assess the extent to which the forms and policies reflected the shift. Three reviewers analyzed the data individually and reached consensuses where needed.ResultsKotter's guiding change framework explained the steps taken to 97 percent utilization rate of the Electronic Health Record and Dental Diagnostic Code. Of the 96 documents included in the forms and policy analysis, 31 documents were officially updated but only two added a diagnostic element.ConclusionChange strategies established in the business literature hold utility for dental practices seeking diagnosis-centered care.Practical implicationsA practice that shifts to a diagnosis-driven care philosophy would be best served by ensuring that the change process follows a leadership framework that is calibrated to the organization's culture

    Microarray data analysis in neoadjuvant biomarker studies in estrogen receptor-positive breast cancer

    Get PDF
    Microarray data have been widely utilized to discover biomarkers predictive of response to endocrine therapy in estrogen receptor-positive breast cancer. Typically, these data have focused on analyses conducted on the diagnostic specimen. However, dynamic temporal changes in gene expression associated with treatment may deliver significant improvements to the current generation of predictive models. We present and discuss some statistical issues relevant to the paper by Taylor and colleagues, who conducted studies to model the prognostic potential of gene expression changes that occur after endocrine treatment

    pGQL: A probabilistic graphical query language for gene expression time courses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Timeboxes are graphical user interface widgets that were proposed to specify queries on time course data. As queries can be very easily defined, an exploratory analysis of time course data is greatly facilitated. While timeboxes are effective, they have no provisions for dealing with noisy data or data with fluctuations along the time axis, which is very common in many applications. In particular, this is true for the analysis of gene expression time courses, which are mostly derived from noisy microarray measurements at few unevenly sampled time points. From a data mining point of view the robust handling of data through a sound statistical model is of great importance.</p> <p>Results</p> <p>We propose probabilistic timeboxes, which correspond to a specific class of Hidden Markov Models, that constitutes an established method in data mining. Since HMMs are a particular class of probabilistic graphical models we call our method Probabilistic Graphical Query Language. Its implementation was realized in the free software package pGQL. We evaluate its effectiveness in exploratory analysis on a yeast sporulation data set.</p> <p>Conclusions</p> <p>We introduce a new approach to define dynamic, statistical queries on time course data. It supports an interactive exploration of reasonably large amounts of data and enables users without expert knowledge to specify fairly complex statistical models with ease. The expressivity of our approach is by its statistical nature greater and more robust with respect to amplitude and frequency fluctuation than the prior, deterministic timeboxes.</p

    A Platform for Processing Expression of Short Time Series (PESTS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Time course microarray profiles examine the expression of genes over a time domain. They are necessary in order to determine the complete set of genes that are dynamically expressed under given conditions, and to determine the interaction between these genes. Because of cost and resource issues, most time series datasets contain less than 9 points and there are few tools available geared towards the analysis of this type of data.</p> <p>Results</p> <p>To this end, we introduce a platform for Processing Expression of Short Time Series (PESTS). It was designed with a focus on usability and interpretability of analyses for the researcher. As such, it implements several standard techniques for comparability as well as visualization functions. However, it is designed specifically for the unique methods we have developed for significance analysis, multiple test correction and clustering of short time series data. The central tenet of these methods is the use of biologically relevant features for analysis. Features summarize short gene expression profiles, inherently incorporate dependence across time, and allow for both full description of the examined curve and missing data points.</p> <p>Conclusions</p> <p>PESTS is fully generalizable to other types of time series analyses. PESTS implements novel methods as well as several standard techniques for comparability and visualization functions. These features and functionality make PESTS a valuable resource for a researcher's toolkit. PESTS is available to download for free to academic and non-profit users at <url>http://www.mailman.columbia.edu/academic-departments/biostatistics/research-service/software-development</url>.</p

    Assessing and selecting gene expression signals based upon the quality of the measured dynamics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the challenges with modeling the temporal progression of biological signals is dealing with the effect of noise and the limited number of replicates at each time point. Given the rising interest in utilizing predictive mathematical models to describe the biological response of an organism or analysis such as clustering and gene ontology enrichment, it is important to determine whether the dynamic progression of the data has been accurately captured despite the limited number of replicates, such that one can have confidence that the results of the analysis are capturing important salient dynamic features.</p> <p>Results</p> <p>By pre-selecting genes based upon quality before the identification of differential expression via algorithm such as EDGE, it was found that the percentage of statistically enriched ontologies (p < .05) was improved. Furthermore, it was found that a majority of the genes found via the proposed technique were also selected via an EDGE selection though the reverse was not necessarily true. It was also found that improvements offered by the proposed algorithm are anti-correlated with improvements in the various microarray platforms and the number of replicates. This is illustrated by the fact that newer arrays and experiments with more replicates show less improvement when the filtering for quality is first run before the selection of differentially expressed genes. This suggests that the increase in the number of replicates as well as improvements in array technologies are increase the confidence one has in the dynamics obtained from the experiment.</p> <p>Conclusion</p> <p>We have developed an algorithm that quantifies the quality of temporal biological signal rather than whether the signal illustrates a significant change over the experimental time course. Because the use of these temporal signals, whether it is in mathematical modeling or clustering, focuses upon the entire time series, it is necessary to develop a method to quantify and select for signals which conform to this ideal. By doing this, we have demonstrated a marked and consistent improvement in the results of a clustering exercise over multiple experiments, microarray platforms, and experimental designs.</p

    Clustering of gene expression data: performance and similarity analysis

    Get PDF
    BACKGROUND: DNA Microarray technology is an innovative methodology in experimental molecular biology, which has produced huge amounts of valuable data in the profile of gene expression. Many clustering algorithms have been proposed to analyze gene expression data, but little guidance is available to help choose among them. The evaluation of feasible and applicable clustering algorithms is becoming an important issue in today's bioinformatics research. RESULTS: In this paper we first experimentally study three major clustering algorithms: Hierarchical Clustering (HC), Self-Organizing Map (SOM), and Self Organizing Tree Algorithm (SOTA) using Yeast Saccharomyces cerevisiae gene expression data, and compare their performance. We then introduce Cluster Diff, a new data mining tool, to conduct the similarity analysis of clusters generated by different algorithms. The performance study shows that SOTA is more efficient than SOM while HC is the least efficient. The results of similarity analysis show that when given a target cluster, the Cluster Diff can efficiently determine the closest match from a set of clusters. Therefore, it is an effective approach for evaluating different clustering algorithms. CONCLUSION: HC methods allow a visual, convenient representation of genes. However, they are neither robust nor efficient. The SOM is more robust against noise. A disadvantage of SOM is that the number of clusters has to be fixed beforehand. The SOTA combines the advantages of both hierarchical and SOM clustering. It allows a visual representation of the clusters and their structure and is not sensitive to noises. The SOTA is also more flexible than the other two clustering methods. By using our data mining tool, Cluster Diff, it is possible to analyze the similarity of clusters generated by different algorithms and thereby enable comparisons of different clustering methods

    Difference-based clustering of short time-course microarray data with replicates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are some limitations associated with conventional clustering methods for short time-course gene expression data. The current algorithms require prior domain knowledge and do not incorporate information from replicates. Moreover, the results are not always easy to interpret biologically.</p> <p>Results</p> <p>We propose a novel algorithm for identifying a subset of genes sharing a significant temporal expression pattern when replicates are used. Our algorithm requires no prior knowledge, instead relying on an observed statistic which is based on the first and second order differences between adjacent time-points. Here, a pattern is predefined as the sequence of symbols indicating direction and the rate of change between time-points, and each gene is assigned to a cluster whose members share a similar pattern. We evaluated the performance of our algorithm to those of K-means, Self-Organizing Map and the Short Time-series Expression Miner methods.</p> <p>Conclusions</p> <p>Assessments using simulated and real data show that our method outperformed aforementioned algorithms. Our approach is an appropriate solution for clustering short time-course microarray data with replicates.</p

    Multiconstrained gene clustering based on generalized projections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene clustering for annotating gene functions is one of the fundamental issues in bioinformatics. The best clustering solution is often regularized by multiple constraints such as gene expressions, Gene Ontology (GO) annotations and gene network structures. How to integrate multiple pieces of constraints for an optimal clustering solution still remains an unsolved problem.</p> <p>Results</p> <p>We propose a novel multiconstrained gene clustering (MGC) method within the generalized projection onto convex sets (POCS) framework used widely in image reconstruction. Each constraint is formulated as a corresponding set. The generalized projector iteratively projects the clustering solution onto these sets in order to find a consistent solution included in the intersection set that satisfies all constraints. Compared with previous MGC methods, POCS can integrate multiple constraints from different nature without distorting the original constraints. To evaluate the clustering solution, we also propose a new performance measure referred to as Gene Log Likelihood (GLL) that considers genes having more than one function and hence in more than one cluster. Comparative experimental results show that our POCS-based gene clustering method outperforms current state-of-the-art MGC methods.</p> <p>Conclusions</p> <p>The POCS-based MGC method can successfully combine multiple constraints from different nature for gene clustering. Also, the proposed GLL is an effective performance measure for the soft clustering solutions.</p

    Genetic Signatures of Exceptional Longevity in Humans

    Get PDF
    Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity

    Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There was a large scale outbreak of the highly pathogenic porcine reproductive and respiratory syndrome (PRRS) in China and Vietnam during 2006 and 2007 that resulted in unusually high morbidity and mortality among pigs of all ages. The mechanisms underlying the molecular pathogenesis of the highly virulent PRRS virus (H-PRRSV) remains unknown. Therefore, the relationship between pulmonary gene expression profiles after H-PRRSV infection and infection pathology were analyzed in this study using high-throughput deep sequencing and histopathology.</p> <p>Results</p> <p>H-PRRSV infection resulted in severe lung pathology. The results indicate that aberrant host innate immune responses to H-PRRSV and induction of an anti-apoptotic state could be responsible for the aggressive replication and dissemination of H-PRRSV. Prolific rapid replication of H-PRRSV could have triggered aberrant sustained expression of pro-inflammatory cytokines and chemokines leading to a markedly robust inflammatory response compounded by significant cell death and increased oxidative damage. The end result was severe tissue damage and high pathogenicity.</p> <p>Conclusions</p> <p>The systems analysis utilized in this study provides a comprehensive basis for better understanding the pathogenesis of H-PRRSV. Furthermore, it allows the genetic components involved in H-PRRSV resistance/susceptibility in swine populations to be identified.</p
    corecore